What are Differential Equations?

Definition

An equation containing the derivatives of one or more dependent variables with respect to one or more independent variables is said to be a differential equation.(DE)

Classification of DEs

Differential Equations are classified by

- type
- order
linearity

Classification by Type

Differential equations can be classified into two distinct types:

- Ordinary Differential Equations : are equations which have a single independent variable. (ODE).
- Partial Differential Equations : are equations with multiple independent variables. (PDE).

Classification by Type

Differential equations can be classified into two distinct types:

- Ordinary Differential Equations : are equations which have a single independent variable. (ODE).
- Partial Differential Equations : are equations with multiple independent variables. (PDE).

Examples

$$
\begin{aligned}
& \frac{d y}{d x}+5 y=e^{x}, \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}+6 y=0, \frac{d x}{d t}+\frac{d y}{d t}=2 x+y \text { are } \mathrm{ODE} \\
& \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}-2 \frac{\partial u}{\partial t}, \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \text { are PDE }
\end{aligned}
$$

Classification by Order

The order of a DE is the highest order derivative appearing in the equation.

Classification by Order

The order of a DE is the highest order derivative appearing in the equation.

Examples

$$
\frac{d^{2} y}{d x^{2}}+5\left(\frac{d y}{d x}\right)^{3}-4 y=e^{x} \quad 2^{n d} \text { order }
$$

$$
y^{\prime}+\sin y=x^{2}
$$

$1^{s t}$ order

Classification by linearity

A differential equation is said to be linear if it can be written in the form
$a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)$
Notice the following properties, which make this linear.

- All coefficients depend only on x.
-The function y and its derivatives appear to at most the first power.
-The function $g(x)$ depends only on x.

Examples

$(y-x) d x+4 x d y=0$
$(1-y) y^{\prime}+2 y=e^{x}$
$\frac{d^{3} y}{d x^{3}}+3 x \frac{d y}{d x}-5 y=e^{x}$
$\frac{d^{2} y}{d x^{2}}+\sin (y)=0$
linear $1^{s t}$ order ODE
nonlinear $1^{\text {st }}$ order ODE
linear $3^{r d}$ order ODE
nonlinear $2^{\text {nd }}$ order ODE

Solution of a Differential Equation

Definition

Any function ϕ, defined on an interval I and possessing at least n derivatives that are continuous on I, which when substituted into an n-th order ODE reduces the equation to an identity, is said to be a solution of the equation on the interval.
The graph of a solution ϕ if an ODE is called an integral curve.

Solution of a Differential Equation

Definition

Any function ϕ, defined on an interval I and possessing at least n derivatives that are continuous on I, which when substituted into an n-th order ODE reduces the equation to an identity, is said to be a solution of the equation on the interval.
The graph of a solution ϕ if an ODE is called an integral curve.

Example

Verify that the function

$$
y=e^{-x^{2}} \int_{o}^{x} e^{t^{2}} \text { is a solution to the ODE } y^{\prime}+2 x y=1
$$

Solution of a Differential Equation

General Solution:

Solutions obtained from integrating the differential equations are called general solutions. The general solution of a nth order ordinary differential equation contains n arbitrary constants resulting from integrating times.

Solution of a Differential Equation

General Solution:

Solutions obtained from integrating the differential equations are called general solutions. The general solution of a nth order ordinary differential equation contains n arbitrary constants resulting from integrating times.

Particular Solution:

Particular solutions are the solutions obtained by assigning specific values to the arbitrary constants in the general solutions.

Solution of a Differential Equation

Singular Solutions:

Solutions that can not be expressed by the general solutions are called singular solutions.

Explicit Solution

Definition

A solution in which the dependent variable is expressed in terms of the independent variable and constants is said to be an explicit solution. i.e $y=f(x)$

Explicit Solution.

Definition

A solution in which the dependent variable is expressed in terms of the independent variable and constants is said to be an explicit solution. i.e $y=f(x)$

Example

$y=e^{-x^{2}} \int_{o}^{x} e^{t^{2}}$ is an explicit solution to the ODE $y^{\prime}+2 x y=1$

Implicit Solution

Definition

A relation $G(x, y)=0$ is said to be an implicit solution of an ODE on an interval I provided there exists at least one function ϕ that satisfies the relation as well as the differential equation on I.

Example

$x^{2}+y^{2}=25$ is an implicit solution to the ODE $y^{\prime}=-\frac{x}{y}$

The Existence and Uniqueness Theorem

THEOREM: Existence of a Unique Solution

Let R be a rectangular region in the xy-plane defined by $a \leq x \leq b, c \leq y \leq d$ that contains the point $\left(x_{0}, y_{0}\right)$ in its interior. If $f(x, y)$ and $\partial f / \partial y$ are continuous on R , Then there exists some interval $I_{0}: x_{0}-h<x<x_{0}+h, h>0$ contained in $a \leq x \leq b$ and a unique function $y(x)$ defined on I_{0} that is a solution of the initial value problem.

